<---- Sponsored ads ------ >

Solve, 3x - 2 = x2


Solution.

Given equation is 3x - 2 = x2

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

3x - 2 = x2 converted into -1x2 + 3x - 2 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = -1, b = 3, c = -2

As we know, discriminant = b2 - 4ac

Discriminant = (3)2 - 4(-1)(-2)

Discriminant = 9 - (8)

Discriminant = 1

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(3) + √1
         2(-1)          


=    -3 + 1
         -2          


= 1


x2 = −b - √D
         2a          


=   −(3) - √1
         2(-1)          


=    -3 - 1
         -2          


= 2


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(3)/(-1)

Sum of roots = 3


Product of roots = c/a

Product of roots = (-2)/(-1)

Product of roots = 2
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.