<---- Sponsored ads ------ >

Solve, 15x2 = 22x


Solution.

Given equation is 15x2 = 22x

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

15x2 = 22x converted into 15x2 - 22x + 0 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 15, b = -22, c = 0

As we know, discriminant = b2 - 4ac

Discriminant = (-22)2 - 4(15)(0)

Discriminant = 484 - (0)

Discriminant = 484

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(-22) + √484
         2(15)          


=    22 + 22
         30          


=    44
   30    


x2 = −b - √D
         2a          


=   −(-22) - √484
         2(15)          


=    22 - 22
         30          


= 0


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(-22)/(15)

Sum of roots = 1.4666666666667


Product of roots = c/a

Product of roots = (0)/(15)

Product of roots = 0
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.