<---- Sponsored ads ------ >

Solve, 9x2 = 12


Solution.

Given equation is 9x2 = 12

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

9x2 = 12 converted into 9x2 + 0x - 12 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 9, b = 0, c = -12

As we know, discriminant = b2 - 4ac

Discriminant = (0)2 - 4(9)(-12)

Discriminant = 0 - (-432)

Discriminant = 432

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(0) + √432
         2(9)          


=   0 + √432
         18          


x2 = −b - √D
         2a          


=   −(0) - √432
         2(9)          


=   0 - √432
         18          


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(0)/(9)

Sum of roots = 0


Product of roots = c/a

Product of roots = (-12)/(9)

Product of roots = -12 / 9
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.