<---- Sponsored ads ------ >

Solve, 3x = -5 + 2x2


Solution.

Given equation is 3x = -5 + 2x2

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

3x = -5 + 2x2 converted into -2x2 + 3x + 5 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = -2, b = 3, c = 5

As we know, discriminant = b2 - 4ac

Discriminant = (3)2 - 4(-2)(5)

Discriminant = 9 - (-40)

Discriminant = 49

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(3) + √49
         2(-2)          


=    -3 + 7
         -4          


= -1


x2 = −b - √D
         2a          


=   −(3) - √49
         2(-2)          


=    -3 - 7
         -4          


=    -10
   -4    


Roots: x1 = -1,     x2 = 10/4


Sum of roots = -b/a

Sum of roots = -(3)/(-2)

Sum of roots = 1.5


Product of roots = c/a

Product of roots = (5)/(-2)

Product of roots = 5 / -2
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.