<---- Sponsored ads ------ >

Solve, 2x2 - 72 = 0


Solution.

Given equation is 2x2 - 72 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 2, b = 0, c = -72

As we know, discriminant = b2 - 4ac

Discriminant = (0)2 - 4(2)(-72)

Discriminant = 0 - (-576)

Discriminant = 576

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(0) + √576
         2(2)          


=    0 + 24
         4          


= 6


x2 = −b - √D
         2a          


=   −(0) - √576
         2(2)          


=    0 - 24
         4          


= -6


Roots: x1 = -6,     x2 = 6


Sum of roots = -b/a

Sum of roots = -(0)/(2)

Sum of roots = 0


Product of roots = c/a

Product of roots = (-72)/(2)

Product of roots = -36
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.