<---- Sponsored ads ------ >

Solve, 7x2 = 63


Solution.

Given equation is 7x2 = 63

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

7x2 = 63 converted into 7x2 + 0x - 63 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 7, b = 0, c = -63

As we know, discriminant = b2 - 4ac

Discriminant = (0)2 - 4(7)(-63)

Discriminant = 0 - (-1764)

Discriminant = 1764

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(0) + √1764
         2(7)          


=    0 + 42
         14          


= 3


x2 = −b - √D
         2a          


=   −(0) - √1764
         2(7)          


=    0 - 42
         14          


= -3


Roots: x1 = 3,     x2 = -3


Sum of roots = -b/a

Sum of roots = -(0)/(7)

Sum of roots = 0


Product of roots = c/a

Product of roots = (-63)/(7)

Product of roots = -9
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.