<---- Sponsored ads ------ >

Solve, 3p2 -5p = 2


Solution.

Given equation is 3p2 -5p = 2

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

3p2 -5p = 2 converted into 3x2 - 5x - 2 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 3, b = -5, c = -2

As we know, discriminant = b2 - 4ac

Discriminant = (-5)2 - 4(3)(-2)

Discriminant = 25 - (-24)

Discriminant = 49

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(-5) + √49
         2(3)          


=    5 + 7
         6          


= 2


x2 = −b - √D
         2a          


=   −(-5) - √49
         2(3)          


=    5 - 7
         6          


=    -2
   6    


Roots: x1 = 2,     x2 = -1/3


Sum of roots = -b/a

Sum of roots = -(-5)/(3)

Sum of roots = 1.6666666666667


Product of roots = c/a

Product of roots = (-2)/(3)

Product of roots = -2 / 3
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.