<---- Sponsored ads ------ >

Solve, x2 + 3 = 5x


Solution.

Given equation is x2 + 3 = 5x

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

x2 + 3 = 5x converted into x2 - 5x + 3 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 1, b = -5, c = 3

As we know, discriminant = b2 - 4ac

Discriminant = (-5)2 - 4(1)(3)

Discriminant = 25 - (12)

Discriminant = 13

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(-5) + √13
         2(1)          


=   5 + √13
         2          


x2 = −b - √D
         2a          


=   −(-5) - √13
         2(1)          


=   5 - √13
         2          


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(-5)/(1)

Sum of roots = 5


Product of roots = c/a

Product of roots = (3)/(1)

Product of roots = 3
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.