<---- Sponsored ads ------ >

Solve, -q2 + 2 = 3q


Solution.

Given equation is -q2 + 2 = 3q

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

-q2 + 2 = 3q converted into -1x2 - 3x + 2 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = -1, b = -3, c = 2

As we know, discriminant = b2 - 4ac

Discriminant = (-3)2 - 4(-1)(2)

Discriminant = 9 - (-8)

Discriminant = 17

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(-3) + √17
         2(-1)          


=   3 + √17
         -2          


x2 = −b - √D
         2a          


=   −(-3) - √17
         2(-1)          


=   3 - √17
         -2          


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(-3)/(-1)

Sum of roots = -3


Product of roots = c/a

Product of roots = (2)/(-1)

Product of roots = -2
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.