<---- Sponsored ads ------ >

Solve, y2 + 5y - 2 = 0


Solution.

Given equation is y2 + 5y - 2 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = 1, b = 5, c = -2

As we know, discriminant = b2 - 4ac

Discriminant = (5)2 - 4(1)(-2)

Discriminant = 25 - (-8)

Discriminant = 33

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(5) + √33
         2(1)          


=   -5 + √33
         2          


x2 = −b - √D
         2a          


=   −(5) - √33
         2(1)          


=   -5 - √33
         2          


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(5)/(1)

Sum of roots = -5


Product of roots = c/a

Product of roots = (-2)/(1)

Product of roots = -2
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.