<---- Sponsored ads ------ >

Solve, -3x2 = 2x - 1


Solution.

Given equation is -3x2 = 2x - 1

Converting given equation into Standard Form of Quadratic Equation. ax2 + bx + c = 0

-3x2 = 2x - 1 converted into -3x2 - 2x + 1 = 0

Comparing it with the standard Form of Quadratic Equation ax2 + bx + c = 0

a = -3, b = -2, c = 1

As we know, discriminant = b2 - 4ac

Discriminant = (-2)2 - 4(-3)(1)

Discriminant = 4 - (-12)

Discriminant = 16

Since discriminant > 0
Both roots are real and unequal.

Using quadratic formula


Roots(x1, x2) = −b ± √   b2 − 4ac 
         2a          


Roots(x1, x2) = −b ± √ D
         2a          


x1 = −b + √D
         2a          


=   −(-2) + √16
         2(-3)          


=    2 + 4
         -6          


= -1


x2 = −b - √D
         2a          


=   −(-2) - √16
         2(-3)          


=    2 - 4
         -6          


=    -2
   -6    


Roots: x1 = ,     x2 =


Sum of roots = -b/a

Sum of roots = -(-2)/(-3)

Sum of roots = -0.66666666666667


Product of roots = c/a

Product of roots = (1)/(-3)

Product of roots = 1 / -3
<---- Sponsored ads ----- >

© 2020-2030 Amibba Systems Private Limited. All rights reserved.